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Abstract  

Modified citrus pectin (MCP) is a naturally soluble dietary fiber derived from citrus 

pectin that inhibits galectin-3 (Gal-3), a proinflammatory, profibrotic, and pro-

metastatic regulatory protein. Interestingly, the anticancer activity of MCP against 

multiple cancers, such as colon, prostate, urinary bladder, hemangiosarcoma, and breast 

cancers, has been demonstrated. It could be attributed to its inhibitory effect on cancer 

cell growth, prevention of metastasis, and induction of cancer cell apoptosis. In 

addition, MCP presented protective effects against organ damage in different disease 

models, including cardioprotective, neuroprotective, renoprotective, and 

hepatoprotective effects. This could be ascribed to its antioxidant, anti-inflammatory, 

anti-apoptotic, and antifibrotic effects. Further, immunomodulatory, detoxifying, 

antimicrobial, and chondroprotective effects have also been demonstrated with MCP. 

It is available in the market as a regarded safe dietary supplement due to its health-

promoting effects. This review involves the interplay between cancer, Gal-3, and MCP, 

as well as the beneficial impacts of MCP in several models of organ damage. 
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1. Introduction  

Citrus pectin was modified to enhance 

its biological activities and was 

introduced as modified citrus pectin 

(MCP). Citrus fiber is obtained from 

citrus fruits' albedo and membrane 

parts.1 Pectin is a complex 

heteropolysaccharide that consists 

mainly of two parts: a linear part named 

the smooth region (homogalacturonan 

(HG)) and a branched part named the 

hairy region (rhamnogalacturonan I 

(RG-I) and rhamnogalacturonan II 

(RG-II)). This is demonstrated in Figure 

1. Pectin occurs primarily as a 

protopectin characterized by high 

molecular weight (Mw), gel-like 

structure, and low solubility, 

constraining its intestinal absorption 

and utility in certain fields.2 Initially, 

modifying citrus pectin was done at 

certain temperatures and different pH 

levels, leading to low Mw and less 

esterified product, facilitating intestinal 

absorption into the blood circulation.3,4 

MCP is marketed as PectaSol, prepared 

by pH-controlled enzymatic treatment, 

and is available in capsule or powder 

form. The recommended dose by the 

manufacturer is fifteen grams to be 

divided 2-3 times per day and taken 

with water or juice.5,6  

The Food and Drug Administration 

(FDA) of the United States classifies 

MCP as a generally regarded safe 

dietary supplement.7 It is sold as a 

dietary supplement due to its health-

promoting effects, such as heavy metal 

elimination, antioxidant activity, anti-

inflammatory, and hypocholesterolemic 

effects.8-10 Moreover, MCP exhibited 

immunomodulatory effects by 

increasing proinflammatory 

cytokines.11 Further, the anticancer 

effects of MCP were demonstrated in 

different preclinical and clinical studies. 

It inhibits cancer cell growth and 

prevents metastasis while inducing 

cancer cell apoptosis.5,12 Most of the 

research on MCP focuses on its 

galectin-3 antagonism.  
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Fig. 1 Schematic illustration of pectin's structure. AG: Arabinogalactan, HG: 

Homogalacturonan, RG: Rhamnogalacturonan, XG: Xylogalacturonan. Taken, with 

permission under Creative Commons Attribution License (CC BY), from Anti-cancer 

activities of pH- or heat-modified pectin.13  

2. Galectin-3  

Galectin-3 (Gal-3) is a multifunctional 

β-galactoside binding lectin. It is 

primarily synthesized and secreted by 

macrophages, eosinophils, and mast 

cells. It binds to ligands having a β-

galactoside structure through its 

carbohydrate-recognition domain 

(CRD). Diverse glycosylated matrix 

proteins, including integrins, 

fibronectin, and laminin, are among the 

numerous Gal-3 ligands that have been 

recognized.14,15 It is a chimera-type 

galectin indicated by a monomeric 

structure that comprises a short N-

http://creativecommons.org/licenses/by/3.0/
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terminal domain, a C-terminal domain, 

and an intermediate repeat domain of 

proline-glycine-alanine-tyrosine16-18 as 

shown in Figure 2. Gal-3 has a 

complicated mechanism of action and 

remains empirical until now. A possible 

explanation is that it interacts with 

many different proteins in the 

extracellular matrix, inside the cell, at 

the cell membrane, and in biological 

fluids. Consequently, it has been 

documented as participating in 

numerous physiological and 

pathological events.19-22 It is engaged in 

various biological events, including cell 

migration, adhesion, apoptosis, 

angiogenesis, and inflammation. Its 

pivotal role in tissue fibrosis and 

inflammation has been documented.23,24  

While Gal-3 has traditionally been 

viewed as a biomarker linked to 

disease,25 recent research has clearly 

shown its significant role as a 

therapeutic target for various fibrotic 

and inflammatory conditions.26 It is 

worth noting that the contribution of 

Gal-3 to the progression and metastasis 

of cancer has been documented.27-30 

 

Fig. 2 Structure of galectin-3. (A) 

Galectin-3 protein structure consists of 

the carbohydrate recognition domain 

(CRD) of 130 amino acids (aa), which 

comprises the C-terminal and contains 

the anti-death motif or Asp-Trp-Gly-

Arg (NWGR). The N-terminal Domain 

(NTD), which has an N-terminal region 

of 12 amino acids and contains a serine 

6 (S) phosphorylation site. (B) 

Pentameric structure of Gal-3.Taken 

with permission under Creative 

Commons Attribution License (CC BY) 

from Galectin-3 in Atrial Fibrillation: 

Mechanisms and Therapeutic 

Implications.31  

 

3. Interplay between cancer, 

Gal-3, and MCP 

The most significant clinical challenge 

related to cancer is metastasis. 

Metastasis is the dissemination of 

cancer cells from the primary tumor 

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


IJABMB (Vol. 2-Issue 2- June 2025) (P55:86)      Randa Ismail et. al., 2025 

_____________________________________________________________________ 

61 
 

growth to distant tissues and organs. It 

is the leading cause of morbidity and 

death linked to cancer.  Regarding the 

metastatic cascade, Gal-3 and 

subsequently MCP modulate different 

rate-limiting steps. MCP is now 

recognized as an up-and-coming anti-

metastatic agent.12 The initial step 

undertaken by the cancer cells, after 

escaping from the primary tumor and 

undergoing intravasation, is to 

overcome apoptosis linked to loss of 

anchorage (anoikis). Gal-3 safeguards 

cancer cells from anoikis.32,33 It induces 

cell cycle arrest at the late G1 phase, 

which is an anoikis-resistant point.32 

MCP induced apoptosis of human 

prostatic JCA-1 cells through 

downregulating cyclin B and cdc2,34 

which may accumulate neoplastic cells 

in the G2/M phase, consequently 

inducing apoptosis.12 

The following rate-limiting step of 

metastasis entails cancer cell arrest in 

the microvasculature of the distant 

organ. Gal-3 has been demonstrated to 

facilitate the adhesion of metastatic 

cells to the endothelium.35-38 

Conversely, MCP inhibited their 

adhesion to endothelium and their 

homotypic aggregation, which is 

associated with the arrest of metastatic 

cells in distant organs and metastatic 

deposit formation intravascularly.4,39-41 

Upon infiltrating the microvessels of 

the target organ, the cancer cells may 

either undergo proliferation 

intravascularly till the metastatic tumor 

surpasses the blood vessel and invades 

the  parenchyma of the distant organ42 

or extravasate before commencing 

secondary tumor growth. Invasive 

propensity encompasses a series of 

interactions between extracellular 

matrix proteins, related to target organ 

stroma and basement membrane, and 

tumor cells mediated by Gal-3.43 MCP 

inhibited these Gal-3-mediated 

interactions. Citrus pectin 

polysaccharides reduced the invasion of 

human endothelial cells through the 

Matrigel dose-dependently,40 as well as 

that of human metastatic buccal 

carcinoma and MDA-MB-231 human 

breast carcinoma metastatic cells.44 
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Following the first parking in distant 

organs and extravasation, almost all 

cancer cells experience apoptosis 

triggered by different factors, and less 

than 2% survive and cause 

micrometastasis.45 Consequently, one 

of the most critical rate-limiting steps 

influencing metastasis efficacy is the 

clonogenic survival of early metastatic 

colonies. It was described that Gal-3 is 

important in neoplastic cell clonogenic 

survival through its anti-apoptotic 

effects, working on the mitochondrial 

apoptosis pathways.46-48 Some reports 

indicated that MCP-induced Gal-3 

blockade could antagonize the anti-

apoptotic effects of Gal-3, hence 

decreasing cancer cells' clonogenic 

survival.48 Accordingly, MCP hindered 

the hemangiosarcoma cells' clonogenic 

survival in a dose-dependent way, 

increasing the apoptosis of tumor 

cells.49 

As micrometastases become clinically 

significant secondary tumors, 

angiogenesis is essential for blood 

vessel development. A close 

relationship exists between Gal-3 and 

the morphogenesis of endothelial cells 

and angiogenesis.50-52 It was shown that 

Gal-3 behaves as a potent angiogenic 

factor through endothelial 

chemoattraction and cell motility 

induction, Matrigel invasion, and 

capillary tube formation.40,50 It was 

confirmed that MCP halted the 

angiogenic activity of Gal-3. In a dose-

dependent way, MCP inhibited human 

endothelial cells' chemotaxis towards 

Gal-3, and it also inhibited endothelial 

cell capillary tube formation in vitro.50 

Further, it decreased spontaneous 

metastasis and angiogenesis when 

given to tumor-bearing mice.50 

MCP can influence chemoresistance. 

Most anticancer agents work by 

inducing tumor cell apoptosis through 

the mitochondrial apoptosis pathway.53 

Gal-3 mitigates this pathway 54. As a 

result, Gal-3 was demonstrated to 

directly modulate the cancer cell 

sensitivity to chemotherapeutic agents, 

for example, staurosporine,54 

cisplatin,54,55 bortezomib,56 etoposide,55 

doxorubicin,49 and dexamethasone.56 

Thus, MCP as a Gal-3 blocker may 
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significantly affect the sensitivity of 

cancer cells to chemotherapy by 

limiting the anti-apoptotic effects of 

Gal-3 on the mitochondrial apoptosis 

pathway. The inhibition of anti-

apoptotic effects of Gal-3 by MCP was 

shown to be adequate to augment the 

response of multiple myeloma cells to 

dexamethasone-induced apoptosis and 

to reverse their resistance to 

bortezomib.56 Upon MCP intervention 

on hemangiosarcoma cells, their 

sensitivity to doxorubicin-induced 

apoptosis was significantly elevated.49 

It was demonstrated that MCP not only 

enhances anticancer drug-induced 

apoptosis but also induces cancer cell 

apoptosis by itself. MCP induced 

apoptosis via the caspase-8-to-caspase-

3 pathway in multiple myeloma cells, 

notably without substantial alterations 

in mitochondrial membrane potential.56 

The anticancer activity in different 

reports continues. A previous study 

reported that Gal-3 stimulated the 

activation of signal transducer and 

activator of transcription 3 (STAT3); its 

constitutive activation in ovarian cancer 

cells is related to chemoresistance. 

Moreover, paclitaxel and MCP 

combination showed synergistic 

cytotoxicity with decreased cell 

viability and elevated caspase-3 activity 

in human SKOV-3 ovarian cancer 

cells.57 Another study showed that MCP 

synergized with paclitaxel against 

SKOV-3 multicellular tumor spheroids 

by inhibiting STAT3 activation, 

decreasing its downstream target 

hypoxia-inducible factor-1α (HIF-1α), 

lowering integrin mRNA levels, and 

consequently reducing protein kinase B 

activity.58 

MCP enhanced the cytotoxicity of 

ionizing radiotherapy in a prostatic cell 

line (PCa) by decreasing anti-apoptotic 

Gal-3, elevating reactive oxygen 

species formation, and modulating 

DNA repair pathways. Moreover, MCP 

inhibited the PCa metastatic phenotype 

through Gal-3 blockade.59 Furthermore, 

the MCP and doxorubicin combination 

resulted in progressive cytotoxicity in 

prostate cancer cell lines, leading to cell 

death mediated by cell cycle arrest in 
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LNCaP and apoptosis in DU-145.60 

MCP-induced cytotoxicity of androgen-

dependent and -independent prostate 

cancer cell lines may be partly due to 

mitogen-activated protein kinase 

signaling inhibition and caspase-3 

activation.61 Furthermore, MCP 

synergistically diminished the invasive 

metastatic behavior of highly metastatic 

human prostate and breast cancer cells 

in vitro when combined with prostate or 

breast polybotanical health 

supplements, respectively.62 

Additionally, MCP-induced Gal-3 

blockade inhibited tumor-associated 

macrophages (TAMs) induced breast 

cancer progression and metastasis in 

hypoxia; hypoxia elevates the 

formation and secretion of Gal-3 from 

TAMs.63   

It was evident that MCP decreased the 

growth of colon tumors that were 

implanted in mice.33 In a previous in 

vitro study, MCP blocked extracellular 

Gal-3-induced human colon cancer cell 

migration at which Gal-3 binds to 

epidermal growth factor receptor, 

inducing colon cancer cell migration.64 

Moreover, MCP inhibited liver 

metastasis in colon cancer in mice 

through Gal-3 inhibition.65 

It has been shown that MCP-mediated 

Gal-3 inhibition decreased urinary 

bladder cancer proliferation and 

survival through apoptosis induction 

and cell cycle arrest in vivo and in 

vitro.66 

In blood cultures, MCP significantly 

activated natural killer cells and T-

helper cells. Additionally, natural killer 

cells exhibited functionality against 

K562 leukemic cells. It appears that the 

MCP immunostimulatory 

carbohydrates consist of low-Mw 

pectin polymer rich in unsaturated and 

saturated oligo-galacturonic acids, as 

well as a low degree of methyl 

esterification 67. It is worth noting that 

MCP enhanced the cytotoxic activity of 

methotrexate both in choriocarcinoma 

(JEG3) and acute lymphoblastic 

leukemia (Nalm6) cell lines.68 

The anticancer activity of MCP is 

affected by its size and domain 



IJABMB (Vol. 2-Issue 2- June 2025) (P55:86)      Randa Ismail et. al., 2025 

_____________________________________________________________________ 

65 
 

structures. Using autoclaving for MCP 

production, enriching de-esterified HG 

oligomers, and reducing RG-I and 

arabinogalactans-I (AG-I) in MCP 

lower than 3 KDa, or decreasing RG-I 

and increasing AG-I in MCP between 

10-30 KDa led to anticancer activity by 

inhibiting cancer cell migration, 

proliferation, and aggregation.69 MCP is 

ideal as an adjunctive immune and 

oncological therapy with its low 

esterification degree, low Mw, and high 

RG-II domain percentage.70 

Different clinical trials have 

demonstrated the potential anticancer 

effects of MCP. A phase II open-labeled 

pilot study assessed patients with 

prostate cancer, untreated at baseline, 

with low prostate-specific antigen 

(PSA) (<10 ng/ml) but gradually rising. 

MCP was administered daily for 12 

months at a dose of 18 capsules (14.4 g). 

In 70% of patients, PSA doubling time 

was prolonged. These results suggest a 

slower progression of cancer and 

possible life extension.71 An initial pilot 

trial examined 7 prostate cancer patients 

(PSA ranges 0.63-7.5) who had relapsed 

or failed previous therapy. The daily 

MCP dose was 15 g. Four of seven 

patients had a positive response (>30% 

PSA doubling time prolongation), one 

had a stable state, one had a partial 

response, and one did not. Three years 

of survival were observed in all 

patients.72 A phase II open-labeled 

study assessing non-metastatic 

biochemically relapsed prostate cancer 

in thirty-four patients who administered 

4.8 g of MCP three times daily for 6 

months. Six patients experienced grade 

1 side effects (bloating and gas), but no 

patient experienced grade 3 or 4 

toxicity. Stable or decreased PSA with 

negative scans was observed in 21 

patients. Moreover, stable or improved 

PSA doubling time with no metastasis 

on scans was observed in 27 patients.73 

After this initial six months of MCP, a 

second long-term treatment for 12 

months with patients exhibiting no 

disease progression was performed. 

After MCP therapy for 18 months, 90% 

(n=35) showed improved PSA doubling 

time, and all presented negative scans. 

No one exhibited grade 3 or 4 toxicity, 

and consequently, MCP exhibits 
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sustained long-term safety and efficacy 

in biochemically relapsed prostate 

cancer.74 

Patients suffering from solid tumors at 

an advanced stage were examined in an 

open-label clinical trial. Each treatment 

cycle consisted of eight weeks of daily 

administration of 15 g MCP. 20.7% (6 

of 29 patients) experienced clinical 

benefits and improved quality of life. 

After 2 cycles, 22.5% (11 of 49 patients) 

exhibited a stable disease, and 12.3% (6 

of 49 patients) had a stable disease for 

over 24 weeks. One metastasized 

prostate cancer patient had a 50% 

reduction of serum PSA levels after 

sixteen weeks of therapy, along with 

enhanced quality of life, clinical 

benefit, and pain relief.75

4. Protective effects of MCP on 

experimental and clinical 

studies  

The protective effects of MCP were 

evidenced in several disease models, 

which are summarized in Table 1.  

4.1.Cardiovascular effects 

A previous study reported that MCP 

ameliorated heart fibrosis elicited by 

isoproterenol in rats through inhibition 

of the Gal-3/TLR-4 (toll-like receptor-4 

)/NF-κB (nuclear factor kappa B) 

signaling pathway, thereby reducing the 

cardiac levels of proinflammatory 

cytokines such as tumor necrosis factor-

alpha (TNF-α), interleukin-18, and 

interleukin-1β (IL-1β ), implicating in 

heart failure pathogenesis.76 Moreover, 

MCP protected against isoproterenol-

caused cardiac hypertrophy in rats 

through activation of p38 signaling and 

blocking Gal-3/TLR-4/JAK2 (Janus 

kinase 2)/STAT3 signaling pathway.77 

Recently, MCP showed protective 

effects against isoprenaline-caused 

myocardial infarction through Gal-3 

inhibition, restoring echocardiographic 

parameters, and protection against 

cardiac remodeling.78 Additionally, 

MCP-induced Gal-3 inhibition 

protected against isoproterenol-elicited 

left ventricular dysfunction and 

fibrosis.79 MCP prevented cardiac 
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alterations related to ischemic 

reperfusion (IR) injury. It attenuated 

cardiac fibrosis and inflammation in the 

rats' left ventricles and protected against 

extracellular matrix remodeling through 

Gal-3 inhibition.80 Also, MCP mitigated 

heart and kidney fibrosis and 

dysfunction in an animal model of 

hyperaldosteronism through Gal-3 

blockade.81 In hypertensive rats with 

hyperaldosteronism, MCP reversed 

vascular inflammation, hypertrophy, 

and fibrosis through Gal-3 inhibition.82 

MCP-mediated Gal-3 inhibition 

protected against cardiac lipotoxicity in 

obese rats, identified by decreasing total 

triglycerides, lysophosphatidylcholine 

levels, and reactive oxygen species.83 

MCP-caused Gal-3 inhibition 

facilitated the upregulation of 

peroxiredoxin-4, thereby decreasing 

cardiac oxidative stress in doxorubicin-

caused cardiotoxicity in rats.84 As 

mentioned previously, MCP inhibited 

Gal-3/TLR-4/NF-κB signaling in a rat 

model of arteriogenic erectile 

dysfunction, reducing inflammation, 

fibrosis, and endothelial injury.85 Most 

recently, MCP protected against aortic 

dissection through inhibiting Gal-

3/TLR-4 signaling and blocking 

pyroptotic macrophage-induced 

inflammation.86  

4.2.Renoprotective effects  

The MCP's anti-apoptotic and anti-

fibrotic effects were mediated through 

Gal-3 blocking in cisplatin-evoked 

kidney damage in mice.87 It exhibited 

renoprotective effects in folic acid-

induced acute renal damage in mice 

through Gal-3 inhibitory, anti-

apoptotic, anti-inflammatory, and 

antifibrotic impacts.88 Further, in 

spontaneously hypertensive rats, MCP 

had Gal-3 inhibitory, antifibrotic 

effects, and anti-inflammatory 

properties. It reduced the levels of 

inflammatory mediators, including 

Cd80, Cd68, Cd44, Cd45, osteopontin, 

and chemoattractant protein-1, in 

addition to fibrotic markers, TGF-β, and 

collagen type I.89  Moreover, in two 

models of normotensive rats, MCP 

ameliorated mild renal injury induced 

by either aortic stenosis or obesity via 



IJABMB (Vol. 2-Issue 2- June 2025) (P55:86)      Randa Ismail et. al., 2025 

_____________________________________________________________________ 

67 
 

Gal-3 inhibition, which offered anti-

inflammatory and antifibrotic effects.90 

Recently, MCP ameliorated oxidative 

stress, fibrosis, inflammation, and 

apoptosis beyond its glycemic control 

against type-2 diabetes mellitus-elicited 

nephropathy in mice.74 

4.3.Hepatoprotective effects  

By preventing fibrosis and apoptosis in 

rats exposed to carbon tetrachloride 

(CCL4), MCP demonstrated 

hepatoprotective effects via Gal-3 

inhibitory effects.91 It was recently 

demonstrated that MCP protects against 

methotrexate-caused liver and 

pulmonary damage in rats through 

antioxidant effects, identified by 

decreased malondialdehyde (MDA) 

levels, increased superoxide dismutase 

(SOD) activity, nuclear factor erythroid 

2 related-factor 2 (Nrf2), and reduced 

glutathione levels, anti-inflammatory 

effects, mediated by the blockade of 

Gal-3/TLR-4/NF-κB pathway, 

antifibrotic effects, mediated by Gal-3 

inhibition, reduced collagen and TGF-β 

levels, and antiapoptotic effects.68 

4.4.Neuroprotective effects  

Through Gal-3 blockade, MCP 

protected against post-subarachnoid 

hemorrhage-induced disruption in the 

blood-brain barrier in mice, with 

mechanisms that may involve TLR-4 

and extracellular signal-related kinase 

1/2 (ERK 1/2), STAT3, and 

metalloproteinase-9 (MMP-9) in 

activation.92 It was reported that in vitro 

and in vivo models of diabetes-induced 

cognitive impairment, MCP offered 

antioxidant effects, indicated by 

reduced levels of MDA and increased 

activity of SOD and glutathione 

peroxidase, and anti-inflammatory 

effects, demonstrated by Gal-3 

inhibition and decreased levels of 

proinflammatory cytokines such as 

TNF-α, IL-1β, and interleukin-6.93 

Previous experimental investigations 

uncovered the neuroprotective effects 

of MCP against ischemic stroke via 
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inhibiting Gal-3/TLR-4/NF-κB/NLRP-

3 (NOD-like receptor 3)/cleaved 

caspase-1/IL-1β signaling pathway in 

microglia.94 It mitigated cognitive 

deficits and neuroinflammation by 

blocking Gal-3 in addition to its 

antioxidant potential in scopolamine-

induced Alzheimer's in rats.95  

4.5.Detoxifying effects 

It was proved clinically that the urinary 

excretion of cadmium, arsenic, and lead 

is increased by MCP in healthy 

subjects.96 In 5 case reports, MCP 

decreased levels of heavy metals with 

no side effects when administered alone 

or in combination with alginates.97 In 

hospitalized children with lead toxicity, 

MCP safely decreased the serum level 

of lead and increased its level in urine.10 

Furthermore, MCP/alginate 

supplementation enhanced the 

excretion of uranium in feces with no 

side effects in a family exposed 

chronically to uranium in their 

environment and diet.98 

4.6.Miscellaneous effects  

Of note, MCP had protective effects 

against articular cartilage defects in 

rabbits through Gal-3 inhibitory, anti-

inflammatory, and antidegenerative 

effects.99 Further, it showed synergistic 

effects with hyaluronate against 

osteoarthritis in rabbits through 

modulating metabolic and 

inflammatory processes and 

consequently alleviating the 

progression of osteoarthritis.100 Both 

MCP and Honokiol (HNK) showed 

antioxidant and anti-inflammatory 

effects when explored in vitro. MCP 

showed a higher antioxidant effect than 

HNK in a dose-dependent way. Of note, 

they demonstrated higher synergistic 

antioxidant and anti-inflammatory 

effects upon combination. This was 

evidenced by inhibiting lipid 

peroxidation, NF-κB, and 

cyclooxygenase-II.9 Additionally, the 

immunomodulatory effects of MCP 

were identified in the mouse spleen, 

which elevated the levels of 

proinflammatory cytokines, which 
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could be advantageous in 

immunotherapy.11 

Coadministration of MCP with 

probiotic supplement Lactobacillus 

acidophilus ATCC 4356 improved 

intestinal microbiota population and 

integrity. There was a significant 

elevation in fecal lactobacilli number in 

MCP alginate probiotic-challenged 

mice.101 It was previously reported that 

the adhesion of Escherichia coli, which 

produces toxins, and the cytotoxicity of 

Shiga toxin were decreased by MCP.102 

MCP exhibited antimicrobial activity 

against Staphylococcus aureus (MRSA) 

in vitro. In addition, it showed additives, 

with most of the MRSA strains, and 

synergetic, with two MRSA strains, 

effects when combined with 

cefotaxime.103 

 

Table 1: Protective effects of modified citrus pectin on experimental and clinical 

studies  

Effect Disease model Outcomes summary 

Cardioprotective 

effect76 

Isoproterenol-induced 

heart failure in rats 

MCP inhibited the Gal-3/TLR-4/NF-κB 

signaling pathway. It decreased the 

expressions of IL-18, TNF-α, and IL-1β 

Cardioprotective 

effect77 

Isoproterenol-caused 

cardiac hypertrophy in rats 

MCP activated p38 signaling and blocked 

Gal-3/TLR-4/JAK2 pathway 

Cardioprotective 

effect78 

Isoprenaline-caused 

myocardial infarction in 

type-2 diabetes mellitus 

rats  

The echocardiographic parameters were 

restored with MCP. Further, it inhibited 

Gal-3 in parallel to its protective effect 

against cardiac remodeling 
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Cardioprotective 

effect79 

Isoproterenol-elicited left 

ventricular dysfunction 

and fibrosis in mice 

MCP inhibited Gal-3, which protected 

against isoproterenol-elicited left 

ventricular dysfunction and fibrosis 

Cardioprotective 

effect80 

Ischemia-reperfusion-

induced myocardial injury 

in rats 

MCP blocked Gal-3, concomitant with 

reduced cardiac inflammation and fibrosis. 

It decreased the ischemic area and 

extracellular matrix remodeling 

Cardioprotective 

effect83 

Cardiac lipotoxicity in 

high-fat diet-induced 

obesity in rats 

MCP blocked Gal-3, which mediated a 

decrease in total triglycerides, 

phosphatidylcholine levels, and reactive 

oxygen species 

Cardioprotective 

effect84 

Doxorubicin-caused 

cardiotoxicity in rats 

MCP upregulated peroxiredoxin-4 through 

Gal-3 inhibition and therefore decreased 

oxidative stress 

Vascular protective 

effect82 

Aldosterone-caused 

vascular fibrosis in rats 

MCP reversed vascular inflammation, 

hypertrophy, and fibrosis, identified by 

reducing collagen type I content, through 

Gal-3 inhibition 

Vascular protective 

effect85 

High-fat diet-induced 

arteriogenic erectile 

dysfunction in rats 

MCP inhibited Gal-3/TLR-4/NF-κB 

signaling. It decreased levels of TNF-α, IL-

6, TGF-β, and collagen type I 

Vascular protective 

effect86 

β-aminopropionitrile 

fumarate/angiotensin-II 

induced aortic dissection 

in mice  

RAW264.7 cells treated 

with H2O2 (In vitro) 

In vivo, MCP decreased the mortality and 

incidence of aortic dissection. It reduced 

the infiltration of inflammatory cells into 

the aorta. Additionally, it blocked Gal-

3/TLR4 signaling  
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In vitro, MCP ameliorated pyroptosis and 

macrophage death induced by H2O2 

Cardio-renoprotective 

effect81 

Aldosterone-induced heart 

and kidney injuries in rats 

MCP inhibited the aldosterone-induced 

increase in blood pressure, cardiac 

remodeling, and fibrosis. It lowered TGF-β 

and collagen type I. Also, it abrogated 

aldosterone-induced hyperfiltration, 

albuminuria, kidney and glomerular 

hypertrophy, tubular lesions, and renal 

fibrosis.  

Renoprotective effect87 Cisplatin-evoked kidney 

damage in mice 

MCP blocked renal Gal-3, which led to 

suppression of protein kinase α, apoptosis, 

cleaved caspase 3, collagen type I, and 

fibronectin. 

Renoprotective effect88 Folic acid-induced acute 

renal damage in mice 

MCP reduced renal proliferation in the 

acute phase of folic acid-induced acute 

renal damage. It decreased the levels of 

Gal-3, TGF-β, collagen type I, fibronectin, 

α-SMA, IL-1β, and TNF-α in the injury 

recovery phase. 

Renoprotective effect89 Spontaneously 

hypertensive rats 

MCP inhibited Gal-3. It reduced the levels 

of inflammatory mediators, including 

Cd80, Cd68, Cd44, Cd45, osteopontin, and 

chemoattractant protein-1, in addition to 

fibrotic markers, TGF-β, and collagen type 

I. 

Renoprotective effect90 Two models of renal 

damage in normotensive 

rats induced by either 

aortic stenosis or obesity 

In the obesity model, MCP blocked Gal-3, 

decreased TGF-β and collagen type I as 

fibrotic markers, normalized α-SMA and 

E-cadherin as EMT markers, decreased 

osteopontin as an inflammatory marker, 
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and ameliorated the kidney injury molecule 

1.  

In the aortic stenosis model, MCP blocked 

Gal-3, decreased connective tissue growth 

factor, TGF-β, and collagen type I, 

normalized α-SMA, E-cadherin, 

fibronectin, and β-catenin, reduced 

osteopontin, and ameliorated the kidney 

injury molecule 1 and NGAL 

Renoprotective effect74 Type-2 diabetes mellitus-

elicited nephropathy in 

mice 

MCP decreased MDA levels, elevated 

catalase activity, and GSH levels. It 

reduced iNOS, TGF-βRII, TNF-α, and 

caspase-3 levels. 

Hepatoprotective 

effect91 

Carbon tetrachloride-

induced liver fibrosis 

MCP inhibited Gal-3. It decreased fibrosis 

markers, α-SMA, TIMP-1, and collagen 

type I. Moreover, it reduced MDA levels 

and increased GSH content and SOD 

activity. It mediated the activation of 

hepatic stellate cells and apoptosis 

induction. 

Hepato- and pulmonary 

protective effects68 

Methotrexate--caused 

liver and pulmonary 

damage in rats 

Both in liver and lung tissues, MCP 

decreased MDA levels, increased SOD 

activity, Nrf2, and GSH levels. It blocked 

Gal-3/TLR-4/NF-κB pathway and reduced 

collagen and TGF-β levels, and cleaved 

caspase-3 

Neuroprotective 

effect92 

Post-subarachnoid 

hemorrhage-induced 

disruption of the blood-

brain barrier in mice 

MCP inactivated TLR-4 and ERK 1/2, 

STAT3, and MMP9 through Gal-3 

blockade. 
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Neuroprotective 

effect93 

Diabetes-induced 

cognitive impairment in 

vivo in rats and in vitro in 

microglia cells 

MCP blocked Gal-3, reduced MDA levels, 

increased activity of SOD and glutathione 

peroxidase, and decreased levels of 

proinflammatory cytokines such as TNF-α, 

IL-1β, and IL-6 

Neuroprotective 

effect94 

Cerebral ischemia 

reperfusion in mice as an 

in vivo model 

Oxygen-glucose 

deprivation/ 

reoxygenation in 

microglia and neuronal 

cells as in vitro models 

MCP ameliorated cerebral cortex cell 

injury and decreased infarct volume, 

cerebral water content, and scores of 

neurological deficits in mice. Moreover, it 

reduced apoptosis and increased cell 

viability in neuronal cells. It inhibited Gal-

3/TLR-4/NF-κB/NLRP-3/cleaved caspase-

1/IL-1β signaling pathway in microglia 

Neuroprotective 

effect95 

Scopolamine-induced 

Alzheimer's in rats 

MCP decreased Gal-3, IL-6, and TNF-α, 

elevated brain-derived neurotrophic factor 

and SOD activity, and enhanced the 

memory performance. 

 Chondroprotective99 Articular cartilage defects 

in rabbits  

MCP decreased levels of Gal-3, MMP13, 

IL-1β, Collagen 1A2 and inhibited 

cartilage degeneration  

Chondroprotective100 Osteoarthritis in rabbits  MCP and hyaluronate combination 

alleviated the signs and symptoms of 

osteoarthritis, protected against the 

degeneration of articular cartilage, and 

reduced synovial inflammation.  

Detoxifying effect96 Metal toxicity (clinical 

trial) 

MCP increased the urinary excretion of 

cadmium, arsenic, and lead in healthy 

subjects 
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Detoxifying effect97 Metal toxicity (clinical 

trial) 

MCP decreased levels of heavy metals with 

no side effects when administered alone or 

in combination with alginates 

Detoxifying effect10 Lead toxicity in 

hospitalized children 

MCP safely decreased the serum level of 

lead and increased its level in urine 

Detoxifying effect98 Low-level chronic 

exposure to uranium 

MCP/alginate supplementation enhanced 

the excretion of uranium in feces with no 

side effects 

Immune function9 Inflammation (in vitro) The MCP and Honokiol combination 

demonstrated higher synergistic antioxidant 

and anti-inflammatory effects, inhibiting 

lipid peroxidation, NF-κB, and 

cyclooxygenase-II. 

Immune function101 Probiotic There was a significant elevation in fecal 

lactobacilli number in MCP alginate 

probiotic-challenged mice 

Antimicrobial effect103 Staphylococcus aureus (In 

vitro) 

MCP had antimicrobial activity alone or 

upon combination with cefotaxime, 

additive and synergistic effects, against 

Staphylococcus aureus  

Abbreviations: α-SMA: Alpha smooth muscle actin, EMT: Epithelial-mesenchymal 

transition, ERK: Extracellular signal-related kinase, Gal-3: Galectin-3, GSH: reduced 

glutathione, IL: Interleukin, iNOS: inducible nitric oxide synthase, JAK2: Janus kinase 

2, MCP: Modified citrus pectin, MDA: Malondialdehyde, MMP: Metalloproteinase, 

NF-κB: Nuclear factor kappa B,  NGAL: Neutrophil gelatinase-associated lipocalin, 

NLRP-3:NOD-like receptor 3, Nrf2: Nuclear factor erythroid 2 related-factor 2, SOD: 

Superoxide dismutase, STAT3: Signal transducer and activator of transcription 3, TGF-

βRII: Tumor growth factor β receptor II, TGF-β: tumor growth factor beta, TIMP-1: 
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Tissue inhibitor metalloproteinase 1, TLR-4: toll-like receptor-4, TNF-α: Tumor 

necrosis factor alpha. 

5. Conclusion  

Several benefits of MCP have been 

highlighted in both preclinical and 

clinical studies. It showed antioxidant, 

antifibrotic, anti-inflammatory, and 

anti-apoptotic effects mediating its 

protective effects in different disease 

models. Moreover, its anticancer 

activity is documented. It inhibits tumor 

cell growth and metastasis. As a natural 

Gal-3 inhibitor, MCP can be combined 

with other chemotherapeutic agents as a 

chemosensitizer or even to protect from 

chemotherapy-associated adverse 

effects, but these applications warrant 

clinical studies to evaluate its 

effectiveness, appropriate doses, and 

safety profile before clinical 

applications. 
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